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Abstract

We analyze the “field-field” cross correlation associated with scattered coda waves, observed at a pair of
distinct receivers, to obtain an estimate of the Green’s function between the receivers with an emphasis
on high-frequency body waves. The scattered waves are generated in a slab with random medium fluctua-
tions by an incident wave packet. Following the dyadic parabolic scaling of wave packets and considering
appropriate scaling for the random fluctuations of the medium, we arrive at a description in terms of a
system of Itô-Schrödinger diffusion models. Studying the Wigner distributions of the fields and expressing
the cross correlation in terms of the Green’s function and the Wigner distribution, we can give a complete
characterization of the cross correlation using a “blurring” transformation.

Résumé

Nous analysons la corrélation croisée entre des champs correspondant à des ondes multiplement diffusées et
observés en un couple de points distincts, afin d’obtenir une estimation de la fonction de Green entre ces
points. Nous prêtons une attention particulière aux contributions des ondes de volume hautes fréquences.
Les ondes sont créées par diffusion dans une couche de milieu aléatoire d’un paquet d’ondes incident. En
adoptant une mise à l’échelle dyadique parabolique des paquets d’ondes et en considérant un milieu aléatoire
avec des échelles appropriées, nous obtenons une description en termes d’un système de modèles de diffusion
de type Itô-Schrödinger. En étudiant les distributions de Wigner des champs et en exprimant la corrélation
croisée en termes de la fonction de Green et de la distribution de Wigner, nous donnons une caractérisation
complète de la corrélation croisée à travers une transformation de “brouillage”.

1. Introduction

We analyze the notion of “field-field” cross correlations associated with scattered coda waves, observed at
pairs of distinct receivers, to obtain an estimate of the Green’s function with an emphasis on high-frequency
body wave reflections.

As a model configuration for the crust, we consider a slab in which random medium fluctuations occur.
The bottom of the slab is bounded by a deterministic discontinuity (a smooth reflector). We consider
waves incident from above the slab, and place our receivers within the slab to study the corresponding
cross correlations. Otherwise, in the entire configuration the medium has a deterministic, smoothly varying
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component. In this general case the incident wave is decomposed into wave packets. Each wave packet
contains a particular scale. The decomposition is used to select a scale in relation to the fluctuations
component of the medium in the slab. Through localization in phase space, the propagation and scattering
of an incident wave packet can be described by a coupled system of paraxial wave equations written in
curvilinear, boundary normal coordinates relative to the support of the wave packet in the deterministic
component of the medium. Thus, in principle, each incident wave packet generates its own system of paraxial
wave equations. The accuracy of this description can be proven to improve with increasingly finer scales.

In this paper we assume that the background medium is constant, that the slab is flat, and we consider
a single wave packet in the limit of fine scales (high frequency). Indeed we view the cross correlations in the
context of parametrix constructions. The paraxial form of the system that we obtain in the limit allows for
the use of Itô’s stochastic calculus (for Hilbert-space valued processes) to analyze the scattering due to the
random fluctuations; indeed, it enables the closure of the hierarchy of moment equations.

The solution procedure of the coupled system of paraxial wave equations is based on an invariant em-
bedding type approach, generating a transmission and a reflection operator capturing the scattering due to
the random fluctuations in the medium. Thus we arrive at a coupled system of Riccati equations for the
two operator kernels. In the limit of fine scales in the sense of distributions, we then obtain a decoupled
system of linear Itô-Schrödinger equations for the limiting transmission and reflection operator kernels, with
a real-valued Brownian field; to be precise, only the moments of these kernels converge in the limit.

The solutions to the Itô-Schrödinger equations define the transmitted and backscattered fields, at least
their statistics. The transmitted field is partly coherent; the backscattered field is weak and fully incoherent
in the absence of a smooth (deterministic) reflector, while it is partly coherent in the presence of a reflector.
We analyze the Wigner distributions of these fields. We obtain a description of the cross correlation between
two points in terms of a blurring transformation of the paraxial random Green’s function between these
points. This transformation is statistically stable (in the sense that it does not depend on the realization of
the random fluctuations of the medium) and it can be expressed in terms of the Wigner distribution of the
fields, which depends on the statistics of the fluctuations of the random medium.

In the past decade, the understanding of how cross-correlating diffuse fields recaptures the Green’s
function, has been an important topic of research (van Tiggelen, 2003). Cross correlating (diffuse) coda
waves as discussed in Campillo and Paul (2003) resulted in the retrieval of surface waves observed at one
station and excited at the other station. The idea of using ambient noise for the retrieval of a body-wave
reflection response, in a planarly layered medium, dates back to Claerbout (1968). The retrieval of direct
and reflected body waves using teleseismic (S -wave) coda was discussed in Tonegawa et al. (2009). The
exploitation of a scattering medium in capturing the Green’s function by field-field cross correlations was
studied by Derode et al. (2003). However, the mathematical analysis of field-field cross correlations in this
setting from the point of view of stochastic calculus has just begun. In our paper we address a scattering
regime in which the field is partly coherent and we aim at retrieving the Green’s function for the particular
realization of the random medium.

2. Scaling and assumptions

We consider acoustic waves propagating in 1 + d spatial dimensions. The governing equations are

ρ(z,x)
∂u

∂t
+∇p = F ,

1

K(z,x)

∂p

∂t
+∇ · u = 0, (1)

where p is the pressure field, u is the velocity field, ρ is the density of mass, and K is the bulk modulus of
the medium; (z,x) ∈ R × Rd denote the space coordinates. The source is modeled by the forcing term F .
We consider a configuration in which a random slab occupies the region

Ωr =
{

(z,x), x ∈ Rd, −L ≤ z ≤ 0
}
,

and is sandwiched in between two homogeneous half spaces. The surface z = 0 is the top interface and the
surface −L < 0 is the bottom or interior interface. The medium consists of a deterministic component and
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random fluctuations in the region Ωr, which vary rapidly in space. To simplify the analysis, the deterministic
component of the medium in Ωr is assumed to be constant.

The medium is assumed to be matched at the top interface z = 0 (transparent boundary conditions).
However, the interior interface can act as a smooth reflector and is part of the deterministic component of
the medium. (This model naturally captures primary reflections if the random fluctuations were absent.)
Indeed, we consider a mismatch at the bottom of the slab, z = −L < 0, which gives jump conditions at the
interior interface. The deterministic component of the medium is thus given by

1

K(z,x)
=


K−10 if z ≤ −L,
K−11 (1 + ν(z,x)) if z ∈ (−L, 0),
K−11 if z ≥ 0,

ρ(z,x) =

ρ0 if z ≤ −L,
ρ1 if z ∈ (−L, 0),
ρ1 if z ≥ 0,

where the random field ν(z,x) models the medium fluctuations, with correlation length lK . The deterministic
wavespeed for z > −L is c1 =

√
K1/ρ1, and for z < −L is c0 =

√
K0/ρ0.

The source, F , is located at z = zs ≥ 0; we assume, here, that zs = 0 and write F (t, z,x) = fs(t,x)δ(z−
zs)ez, where ez denotes the unit vector pointing in the z-direction, signifying a body force. We shall refer
to waves propagating in the positive z direction as upgoing. The source generates downgoing waves which
“propagate” through the random medium, are reflected by the interface at z = −L, and “propagate” up
through the medium.

The source is now assumed to be of the form

F (t, z,x) = χε(t,x) δ(z)ez. (2)

The forcing function χε(t,x) = χ(ε−4t, ε−2x) gives a wave packet oriented in the z direction of scale k,
ε = 2−k/4, corresponding with a dyadic parabolic decomposition of phase space. Here χ̂ denotes a window
function supported in a box in the (ω,κ) Fourier domain (the support of χ̂ is a finite distance away from
the ω = 0 axis) and we use the Fourier transforms

χ(t,x) =
1

(2π)d+1

∫∫
χ̂(ω,κ) e−i (ωt−κ·x) dωdκ =

1

2π

∫
χ̌(ω,x) e−iωt dω.

Thus the transverse width, R0, of the source function is of order ε2. This scaling is consistent with the
paraxial regime, which will be discussed in the next section, in as much as that it generates the wave solution
up to an error of order ε2. We assume that

• the correlation length or radius of the fluctuations, lK , is of the same order asR0; this regime guarantees
non-trivial interaction between the fluctuations of the medium and the waves;

• the propagation distance is of the order of L, which is of order 1; the ratio between the propagation
distance and the correlation length of the fluctuations is of order ε−2.

The wave packet has a central frequency of order 2k. We will establish results which converge as k → ∞,
signifying the high-frequency regime.

Henceforth we shall assume non-dimensionalized units chosen such that the deterministic bulk modulus
K1 and density ρ1 in the region Ωr are one and, hence, the deterministic wavespeed c1 =

√
K1/ρ1 and

impedance Z1 =
√
K1ρ1 are equal to one. We assume that Z0 =

√
K0ρ0 6= 1. The medium fluctuations

attain the scaled form

1

K(z,x)
=

K−10 if z ≤ −L,
1 + ε3ν( z

ε2 ,
x
ε2 ) if z ∈ (−L, 0),

1 if z ≥ 0,
ρ(z,x) =

ρ0 if z ≤ −L,
1 if z ∈ (−L, 0),
1 if z ≥ 0,

where ν is a zero-mean, stationary random field with correlation length of order one and standard deviation
of order one. We write

C(z,x) = E[ν(z′ + z,x′ + x)ν(z′,x′)], (3)

D(x) =

∫ ∞
−∞

C(z,x) dz. (4)
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We assume that ν satisfies strong mixing conditions in z. The amplitude ε3 of the fluctuations has been
chosen so as to obtain an effective limit of order one when ε goes to zero. That is, if the magnitude of the
fluctuations is smaller than ε3, then the wave would propagate as if the medium were homogeneous, while
if the order of magnitude is larger, then the wave would not penetrate the slab at all. The scaling that we
consider here, controlled by the choice of wave packet, corresponds to the partly coherent regime.

3. Coupled system of paraxial equations, and transmisison and reflection operators

We eliminate the transverse components of the velocity field. Because both the medium and the source
have transverse spatial variations at the scale ε2, it is convenient to rescale the transverse coordinates
accordingly, that is, ε2x → x. In the region Ωr, we then introduce the directional decomposition in the
deterministic medium component,

p(t, z, ε2x) =
1

2π

∫ (
ǎε(ω, z,x)eiω

z
ε4 + b̌ε(ω, z,x)e−iω

z
ε4

)
e−iω

t
ε4 dω, (5)

with complex amplitudes ǎε and b̌ε representing, locally, up- and down-going wave constituents, respectively.
We have used Cartesian coordinates, since the ray generated by initial conditions corresponding with the
center of the wave packet is straight, along the z direction.

The wave-packet source enables the use of the paraxial approximation in the deterministic component
of the medium with the above mentioned estimate, leading to the system for z ∈ (−L, 0):

∂ǎε

∂z
=

[
iω

2ε
ν
( z
ε2
,x
)

+
i

2ω
∆x

]
ǎε + e−2iω

z
ε4

[
iω

2ε
ν
( z
ε2
,x
)

+
i

2ω
∆x

]
b̌ε, (6)

∂b̌ε

∂z
= −e2iω z

ε4

[
iω

2ε
ν
( z
ε2
,x
)

+
i

2ω
∆x

]
ǎε −

[
iω

2ε
ν
( z
ε2
,x
)

+
i

2ω
∆x

]
b̌ε, (7)

supplemented with the boundary conditions:

b̌ε(ω, z = 0−,x) = −1

2
χ̌(ω,x), (8)

ǎε(ω, z = (−L)+,x) = R0e
2iω L

ε4 b̌ε(ω, z = (−L)+,x), (9)

where R0 = (Z0 − 1)/(Z0 + 1). We also have the jump condition across z = −L:

b̌ε(ω, (−L)−,x) = T0b̌ε(ω, (−L)+,x),

where T0 = 2Z
1/2
0 /(1 + Z0), and across z = 0:

ǎε(ω, 0+,x) = ǎε(ω, 0−,x) +
1

2
χ̌(ω,x).

In the deterministic case, with ν = 0, it can be proven that this system decouples with solutions accurate
up to order ε2.

We invoke an invariant imbedding approach to obtain the representation valid for −L < z < 0:

b̌ε(ω, (−L)−,x) = T0
∫

T ε(ω,−L, z,x,x′)b̌ε(ω, z,x′) dx′, (10)

ǎε(ω, z,x) = R0e
2iω L

ε4

∫
Rε(ω,−L, z,x,x′)b̌ε(ω, z,x′) dx′, (11)

where the operators T ε and Rε, defined through their kernels, satisfy a natural coupled system of operator
Riccati equations which follow from the equations satisfied by the local amplitudes. In the scaling regime
ε→ 0 we are able to deduce from this system a description in terms of effective white noise models for the
transmission and reflection operators, at least on the level of moments. We describe this in the next section.

The formulation generalizes to curvilinear coordinates if the deterministic wave speed in the slab is no
longer constant, and the rays are no longer straight, using techniques from microlocal analysis and harmonic
analysis.
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4. Itô-Schrödinger diffusion models for transmitted and backscattered fields

We center according to the travel time associated with the deterministic medium component (constant
wave speed, here) and define the transmitted and reflected pressure fields by

pεR(s,x) := p(2L+ ε4s, 0+, ε2x)− 1

2
χ
(2L

ε4
+ s,x

)
, (12)

pεT(s,x) := p(L+ ε4s, (−L)−, ε2x). (13)

The field pεT(s,x) is the field observed just below the bottom interface at z = (−L)−; the field pεR(s,x) is
the field observed just above the top interface at z = 0+:

pεR(s,x) =
1

2π

∫
ǎε(ω, 0+,x)e−iωs dω, (14)

pεT(s,x) =
1

2π

∫
b̌ε(ω, (−L)−,x)e−iωs dω (15)

These fields are now characterized via effective scaling limit models for the transmission and reflection
operators:

Proposition 4.1. The processes (pεT(s,x))s∈R,x∈Rd , (pεR(s,x))s∈R,x∈Rd converge in distribution as ε→ 0 in
the space C0(R, L2(Rd,R2))∩L2(R, L2(Rd,R2)) to the limit processes (pT(s,x))s∈R,x∈Rd , (pR(s,x))s∈R,x∈Rd

given by

pR(s,x) = −R0

4π

∫∫
Ř(ω,−L, 0,x,x′) χ̌(ω,x′) dx′e−iωs dω, (16)

pT(s,x) = −T0
4π

∫∫
Ť (ω,−L, 0,x,x′) χ̌(ω,x′) dx′e−iωs dω, (17)

where T0 and R0, are the transmission, resp. reflection, coefficient of the interface at z = −L and defined
above. Furthermore, L2(R, L2(Rd,R2)) = L2(R × Rd,R2). The operators (Ř(ω,−L, z,x,x′))z∈[−L,0] and

(Ť (ω,−L, z,x,x′))z∈[−L,0] are the solutions of the following Itô-Schrödinger diffusion models:

dŘ(ω,−L, z,x,x′) =
i

2ω
(∆x + ∆x′) Ř(ω,−L, z,x,x′) dz +

iω

2
Ř(ω,−L, z,x,x′) ◦ (dB(z,x) + dB(z,x′)) ,(18)

dŤ (ω,−L, z,x,x′) =
i

2ω
∆x′ Ť (ω,−L, z,x,x′) dz +

iω

2
Ť (ω,−L, z,x,x′) ◦ dB(z,x′), (19)

with the initial conditions at z = −L:

Ř(ω,−L, z = −L,x,x′) = δ(x− x′), Ť (ω,−L, z = −L,x,x′) = δ(x− x′).

The symbol ◦ stands for the Stratonovich stochastic integral, and B(z,x) is a real-valued Brownian field with
covariance

E[B(z1,x1)B(z2,x2)] = min{z1, z2}C0(x1 − x2). (20)

Making use of the semigroup property of the effective operators we also find that the joint law for the
direct arrival to the two points of observation located at (−L1, ε

2x1) and (−L2, ε
2x2), with −L ≤ −L2 ≤

−L1 ≤ 0, can be characterized by

p(L1 + ε4s,−L1, ε
2x1) ∼ − 1

4π

∫∫
Ť (ω,−L1, 0,x1,x

′) χ̌(ω,x′) dx′e−iωsdω, (21)

p(L2 + ε4s,−L2, ε
2x2) ∼ − 1

4π

∫∫
Ť (ω,−L2,−L1,x2,x

′′)Ť (ω,−L1, 0,x
′′,x′)χ̌(ω,x′) dx′dx′′e−iωsdω.(22)

We note that, for −L ≤ −L2 ≤ −L1 ≤ 0, the operators Ť (ω,−L,−L2,x,x
′) and Ř(ω,−L,−L2,x,x

′) are
statistically independent of Ť (ω,−L2,−L1,x,x

′) and Ř(ω,−L2,−L1,x,x
′), which we exploit in evaluating
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⊗

z = 0

z =−L1

z =−L2

z =−L

Figure 1: Configuration. The source is located at the surface z = 0. An interface is present at depth z = −L. We compute the
cross correlation between the two points at depth −L1 and −L2. The random fluctuations occur in the interval z ∈ (−L, 0).
Configuration. La source est placée à la surface z = 0. Une interface est présente à la profondeur z = −L. Nous calculons la
corrélation croisée entre les deux points aux profondeurs −L1 et −L2. Le milieu est aléatoire dans l’intervalle z ∈ (−L, 0).

the cross-correlations. We remark here also that the transmission operator over the sub-slab (−L1, 0) appears
in both expressions in (21-22) and it is this pairing that will lead to an expression for the cross correlations
in terms of a statistically stable filter or transformation below. The general statistical properties of the
operators Ř, Ť were studied in Garnier and Sølna (2009a).

5. Characterization of cross correlations

Here, we characterize the “field-field” correlation function between the points (−L1, ε
2x1) and (−L2, ε

2x2).
We assume here that T � L and 0 < L1 < L2 < L. The field-field correlation function is given by

Vε
T (τ) =

∫ T

0

p(t,−L1, ε
2x1)p(t+ τ,−L2, ε

2x2) dt . (23)

The configuration is illustrated in Figure 1, we compute the cross correlation in between the two points
at depth −L1 and −L2. We will see that the wave field correlation function concentrates around specific
time lags τ that correspond to travel times between the two observation points, and that the time extent of
correlation function around these time lags is much smaller, of order ε4, i.e., of the same order as the source
pulse width.

Under the scaling assumptions of Section 2 we find that the correlations in (23) has leading contributions
at four particular time lags:

Vε
T

(
± (L2 − L1) + ε4s

)
/ε4 ∼ V±t (s) , (24)

Vε
T

(
± (2L− L1 − L2) + ε4s

)
/ε4 ∼ V±r (s) . (25)

Here, the amplitude scaling ε−4 corresponds to a re-scaling of the source time traces so that they have order
one energy, but plays no significant role as the problem is linear. We shall here focus on the contribution
V+
t which corresponds to correlation of wave components directly transmitted in between the points of

observation (see Figure 2). The contribution V+
t is concentrated around time lag equal to +(L2 − L1) and

it comes from the correlation between the waves that propagate from the surface to the depth −L1 and
then to the depth −L2. The contribution V−t is concentrated around time lag equal to −(L2 − L1) and it
comes from the correlation between the waves that have been reflected by the interface at z = −L and that
propagate from this interface to the depth −L2 and then to the depth −L1. We stress here that these wave
components have been strongly affected by the multiple scattering in the medium and understanding how
this affects the relation of the components V and Green’s functions is our main objective. The contributions
V±r correspond to cross terms and they will be treated in detail elsewhere. We remark here that they give
contributions concentrated around times lags that are larger than the ones of the first two contributions
(since 2L−L1−L2 > L2−L1) and they can be used for estimation of the depth L of the bottom interface.
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𝜈t
+

𝜈r
+

𝜈t
-

𝜈r
-

z=-L
1

z=-L2

Figure 2: The four contributions to the cross correlation between points (−L1, ε2x1) and (−L2, ε2x2).
Les quatre contributions à la corrélation croisée entre les points (−L1, ε2x1) et (−L2, ε2x2).

The correlation component V+
t can be characterized in distribution in the scaling limit considered in this

paper by the following expression using (21), (22) and the definition (23):

V+
t (s) =

1

2π

∫∫
Λ+
t (ω,x;x1, L1)Ť (ω,−L2,−L1,x2,x1 − x)dxe−iωsdω , (26)

where Ť (ω,−L2,−L1,x,x
′) is defined by (19). Remember that Ť (ω,−L2,−L1,x2,x1) is the random

paraxial Green’s function from the point (−L1,x1) to the point (−L2,x2) that we want to estimate. There-
fore, (26) reads as a filtered version of the Green’s function in between the two points of observation. This
filter is

Λ+
t (ω,x;x1, L1) =

1

4

∫∫
Ť (ω,−L1, 0,x1 − x,y2)Ť (ω,−L1, 0,x1,y1)χ̌(ω,y2)χ̌(ω,y1)dy1dy2. (27)

In the regime considered in this paper the filter Λ+
t defining the relevant transformation is self-averaging,

see de Hoop and Sølna (2009), in the sense that

Λ+
t (ω,x;x1, L1) =

1

4

∫∫
E
[
Ť (ω,−L1, 0,x1 − x,y2)Ť (ω,−L1, 0,x1,y1)

]
χ̌(ω,y2)χ̌(ω,y1)dy1dy2 .

In order to characterize the filter Λ+
t we introduce the Wigner transform defined by

WT
ω (L1,x,x

′,κ,κ′) =

∫∫
e−i(κ·y+κ

′·y′)E
[
Ť
(
ω,−L1, 0,x+

y

2
,x′+

y′

2

)
Ť
(
ω,−L1, 0,x−

y

2
,x′ − y

′

2

)]
dydy′ .

The Wigner transforms can be shown to satisfy a set of transport equations that can be integrated, as shown
in Garnier and Sølna (2009b), and we find the following integral representation for WT

ω :

WT
ω (z,x,x′,κ,κ′) =

1

(2π)d

∫∫
e−i(κ

′+κ)·a−i(x′−x+κ
ω z)·be

ω2

4

∫ z
0

D(a+ b
ω z′)−D(0)dz′

dadb . (28)

This gives then an integral expression for the filter. In order to get a explicit form for the filter and
characterize the associated resolution scale, or filter support scale, we consider next a particular regime of
relatively strong scattering or clutter.

The strongly cluttered regime

We introduce the correlation length ` and the standard deviation σ of the random fluctuations:

C(z,x) = σ2C0

(z
`
,
x

`

)
.
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With this representation we have

D(x) = σ2`D0

(x
`

)
, D0(x) =

∫ ∞
−∞

C0(z,x)dz.

We assume also that the normalized autocorrelation function D0(x) is at least twice differentiable at x = 0,
which corresponds to a smooth random medium.

We introduce the parameter, depending on ω,

βL(ω) = L
σ2`ω2

4
, (29)

which characterizes the strength of the forward scattering. We shall then assume a subsequent scaling regime
corresponding to relatively strong medium interaction, with βL(ω) being large.

Second we introduce the frequency-dependent resolution parameter:

Σ2
ω(L1) =

16

ω2γL1
, (30)

where we defined

γ = −σ
2

d`
∆D0(0) .

Using the results of Garnier and Sølna (2009a) we find the following expression for the filter

Λ+
t (ω,x;x1, L1) =

1

4

( 6

πγL3
1

)d/2
exp

(
− |x|2

2Σ2
ω(L1)

)∫
|χ̌(ω,y1)|2dy1 . (31)

Thus, we have a situation in which a sharp filter and Green’s function estimation has been enabled by the
medium correlations. We remark that the expression (31) is valid provided |x1| �

√
γL3

1, which means that
the point (−L1, ε

2x1) is in the forward cone of wave energy (Garnier and Sølna, 2009a; de Hoop and Sølna,
2009). Note that this cone is wider than the usual deterministic light cone due to multiple scattering.

We have similarly

V−t (s) =
R2

0

2π

∫∫
Λ−t (ω,x;x2, L2, L)Ť (ω,−L1,−L2,x1,x2 − x)dxe−iωsdω ,

with the filter

Λ−t (ω,x;x2, L2, L) =
1

4

∫∫
Ť (ω,−L2, 0,y4,y2)Ť (ω,−L2, 0,y3,y1)

× Ř(ω,−L,−L2,x2 − x,y4)Ř(ω,−L,−L2,x2,y3)χ̌(ω,y2)χ̌(ω,y1)dy1dy2 .

Note that, by reciprocity, we have

V−t (s) =
R2

0

2π

∫∫
Λ−t (ω,x;x2, L2, L)Ť (ω,−L2,−L1,x2 − x,x1)dxe−iωsdω , (32)

which shows that we obtain a filtered version of the anti-causal Green’s function in between the two points
of observation.

We can also get a simple expression of the filter in the strongly cluttered regime. Self-averaging implies
that

Λ−t (ω,x;x2, L2, L) =
1

4

∫∫
E
[
Ť (ω,−L2, 0,y4,y2)Ť (ω,−L2, 0,y3,y1)

]
(33)

×E
[
Ř(ω,−L,−L2,x2 − x,y4)Ř(ω,−L,−L2,x2,y3)

]
χ̌(ω,y2)χ̌(ω,y1)dy1dy2dy3dy4.
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We will again in general have sharp clutter enabled resolution for the filter Λ−t , analogously to the situation
for the filter Λ+

t . However, the presence of the reflection operator in the expression for the filter (33)
modifies the expression for the filter in a way that depends more critically on the particular scaling regime
considered. In particular, one may have scaling situations in which there is a restoration of coherence for the
reflected waves which affects the resolution, moreover, a diffusive or incoherent bottom interface condition
will affect wave diversity and resolution (Garnier and Sølna, 2009b). These phenomena will be treated in
detail elsewhere.

6. Discussion

We presented an analysis for partly coherent and partly incoherent body waves generated by a (teleseis-
mic) wave packet remotely incident on a slab (the crust) containing a medium consisting of a deterministic
component and a random field, based on the dyadic parabolic decomposition of phase space coupled to
the scaling of the random fluctuations. The deterministic component consists, here, of a planarly layered
medium, but can be generalized to contain conormal singularities (discontinuities) combined with smooth
wave speed variations. The wave packets provide a frame to represent and study partly coherent wave fields.

To obtain information about the deterministic medium component, one needs to consider “field-field”
cross correlations. We showed that these cross correlations are characterized by a transformation (blur-
ring filter) of the random paraxial Green’s function, between the points at which the fields are taken, the
transformation containing information about the statistics of the random fluctuations. If the points are
taken purely transverse to the propagation direction of the wave packet in the deterministic component, the
blurring significantly increases, which is consistent with the usual stationary phase arguments. In general
our results fully characterize the cross correlation function in the regime in which the source and random
medium scaling is such that the waves remain concentrated in phase space.
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